Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The estimation of changes in CMR(O2) using functional MRI involves an essential calibration step using a vasoactive agent to induce an isometabolic change in CBF. This calibration procedure is performed most commonly using hypercapnia as the isometabolic stimulus. However, hypercapnia possesses a number of detrimental side effects. Here, a new method is presented using hyperoxia to perform the same calibration step. This procedure requires independent measurement of Pa(O2), the BOLD signal, and CBF. We demonstrate that this method yields results that are comparable to those derived using other methods. Further, the hyperoxia technique is able to provide an estimate of the calibration constant that has lower overall intersubject and intersession variability compared to the hypercapnia approach.

Original publication




Journal article



Publication Date





808 - 820


Adult, Brain, Brain Mapping, Calibration, Female, Humans, Hyperoxia, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Male, Oxygen, United Kingdom