Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recently, adipose tissue has been implicated in the regulation of vascular function in humans. This regulatory function is mediated via the release of vasoactive cytokines called adipokines. Adiponectin is an adipokine with powerful anti-inflammatory and antioxidant properties being dysregulated in obesity and in insulin resistance states. In both in vitro and in vivo models adiponectin has been shown to increase nitric oxide bioavailability, improve endothelial function, and exert beneficial effects on vascular smooth muscle cell function. Strategies to upregulate adiponectin expression or to potentiate adiponectin signalling may favourably modulate vascular redox state and therefore reduce cardiovascular risk. Various drug classes such as glitazones, newer sulfonylureas, angiotensin receptor blockers, ACE inhibitors and nicotinic acid exert beneficial effects on insulin resistance partly by increasing plasma adiponectin levels. Others such as tetrahydrobiopterin or certain antioxidants are also promising in normalizing plasma adiponectin levels. Given the central role of adiponectin in vascular disease states and obesity-related metabolic disorders, improving adiponectin vascular or systemic bioavailability via existing drugs or novel therapeutic strategies may be valuable in the prevention of cardiovascular disease in humans. The discussion of recent patents for the adiponectin as a regulator of vascular redox state also included in this review article.

Original publication




Journal article


Recent Pat Cardiovasc Drug Discov

Publication Date





78 - 88


Adipokines, Adiponectin, Animals, Cardiovascular Diseases, Drug Delivery Systems, Gene Expression Regulation, Humans, Obesity, Oxidation-Reduction, Patents as Topic, Vascular Diseases