Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: Endothelin-1 (ET-1) is a key regulator of arterial blood pressure in humans, and homocysteinemia is associated with increased oxidative stress. It is still unclear whether homocysteine-induced oxidative stress is implicated in the regulation of ET-1 expression. We examined the impact of acute homocysteinemia on endothelial function in hypertensive patients and healthy individuals, and the potential role of ET-1. METHODS: In this double-blind, placebo-controlled study, 39 hypertensive and 49 healthy individuals were randomized to receive high-dose vitamins (2 g vitamin C and 800IU vitamin E) or placebo followed by methionine loading 100 mg/kg body weight. Endothelium-dependent dilation (EDD) and endothelium-independent dilation (EID) of the brachial artery were evaluated by plethysmography, at baseline and 4 h postloading (4 h PML). ET-1 was measured by ELISA, whereas total lipid hydroperoxides (per-ox) levels were measured by a commercially available photometric technique. RESULTS: Acute, methionine-induced homocysteinemia decreased EDD in all study groups (P < 0.001 for all), whereas vitamins pretreatment failed to prevent this effect, despite the vitamins-induced reduction of peroxidation in the hypertensives group (P < 0.05). On the contrary, methionine loading significantly increased plasma ET-1 levels only in hypertensives (P < 0.05), an effect which was not prevented by antioxidant vitamins (P < 0.05). EID remained unchanged after methionine loading, in all study groups (P = NS for all groups). CONCLUSION: Experimental homocysteinemia rapidly blunts endothelial function in both hypertensive individuals and healthy individuals. The rapid elevation of ET-1 levels observed only in hypertensives, suggests that ET-1 may be the key mediator of homocysteine-induced endothelial dysfunction, independently of oxidative stress.

Original publication

DOI

10.1097/HJH.0b013e32833778b2

Type

Journal article

Journal

J Hypertens

Publication Date

05/2010

Volume

28

Pages

925 - 930

Keywords

Adult, Ascorbic Acid, Double-Blind Method, Endothelin-1, Endothelium, Vascular, Female, Homocysteine, Humans, Hyperhomocysteinemia, Hypertension, Male, Methionine, Oxidative Stress, Signal Transduction, Vasodilation, Vitamin E