Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

1. The effects of GTP and Ca2+ on secretion from single pancreatic beta-cells were studied using capacitance measurements as an indicator of exocytosis. 2. GTP or GTP gamma S produced a concentration-dependent increase in cell capacitance in the absence of intracellular calcium. There was no effect of cyclic AMP or BAPTA an GTP-induced secretion. 3. In the absence of GTP, the relationship between intracellular calcium concentration and the maximum rate of secretion was fitted by the Hill equation with a slope factor of 2.5 and half-maximal activation at 1.6 microM intracellular Ca2+. Similar values were obtained in the presence of GTP gamma S, suggesting GTP does not alter the sensitivity of the secretory machinery to Ca2+. 4. GDP beta S alone had no effect on cell capacitance but caused a dose-dependent inhibition of exocytosis induced by infusion of either GTP gamma S or Ca2+, suggesting both stimuli involve G-protein activation. GDP beta S was without effect on exocytosis evoked by depolarization-mediated Ca2+ entry. 5. The time course of exocytosis following rapid elevation of GTP gamma S by photolysis of a caged precursor was dependent on the intracellular Ca2+ and cyclic AMP concentrations. 6. Our results are interpreted in terms of a model in which the secretory pathways stimulated by Ca2+ and GTP contain both common and separate parts.

Original publication




Journal article


J Physiol

Publication Date



496 ( Pt 1)


255 - 264


Animals, Calcium, Electrophysiology, Exocytosis, Guanosine 5'-O-(3-Thiotriphosphate), Guanosine Diphosphate, Guanosine Triphosphate, In Vitro Techniques, Islets of Langerhans, Kinetics, Membrane Potentials, Mice, Patch-Clamp Techniques, Thionucleotides