Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The detection of loci contributing effects to complex human traits, and their subsequent fine-mapping for the location of causal variants, remains a considerable challenge for the genetics research community. Meta-analyses of genomewide association studies, primarily ascertained from European-descent populations, have made considerable advances in our understanding of complex trait genetics, although much of their heritability is still unexplained. With the increasing availability of genomewide association data from diverse populations, transethnic meta-analysis may offer an exciting opportunity to increase the power to detect novel complex trait loci and to improve the resolution of fine-mapping of causal variants by leveraging differences in local linkage disequilibrium structure between ethnic groups. However, we might also expect there to be substantial genetic heterogeneity between diverse populations, both in terms of the spectrum of causal variants and their allelic effects, which cannot easily be accommodated through traditional approaches to meta-analysis. In order to address this challenge, I propose novel transethnic meta-analysis methodology that takes account of the expected similarity in allelic effects between the most closely related populations, while allowing for heterogeneity between more diverse ethnic groups. This approach yields substantial improvements in performance, compared to fixed-effects meta-analysis, both in terms of power to detect association, and localization of the causal variant, over a range of models of heterogeneity between ethnic groups. Furthermore, when the similarity in allelic effects between populations is well captured by their relatedness, this approach has increased power and mapping resolution over random-effects meta-analysis.

Original publication

DOI

10.1002/gepi.20630

Type

Journal article

Journal

Genet Epidemiol

Publication Date

12/2011

Volume

35

Pages

809 - 822

Keywords

Alleles, Bayes Theorem, Cyclin-Dependent Kinase 5, Diabetes Mellitus, Type 2, Ethnic Groups, Genetic Heterogeneity, Genome-Wide Association Study, Humans, Sample Size, Software, tRNA Methyltransferases