Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Somatostatin receptor-2 (SSTR2) is expressed on cell surface of neuroendocrine neoplasias; its presence is exploited for the delivery of peptide receptor radionuclide therapy (PRRT). Patients with no or low expression of SSTR2 are not candidates for PRRT. SSTR2 promotor undergoes epigenetic modification, known to regulate gene expression. We investigated whether the demethylation agent, guadecitabine, could enhance the expression of SSTR2 in NET models, using radioligand uptake/PET imaging as a biomarker of epigenetic modification. METHODS: The effects of guadecitabine on the transcriptional, translational, and functional regulation of SSTR2 both in vitro and in vivo using low (QGP-1) and high (BON-1) methylated neuroendocrine neoplasia models was characterised. Promotor region methylation profiling of clinical samples (n = 61) was undertaken. Safety of combination guadecitabine and PRRT was assessed in vivo. RESULTS: Pyrosequencing of cell lines illustrated differential methylation indices - BON: 1 94%, QGP: 1 21%. Following guadecitabine treatment, a dose-dependent increase in SSTR2 in BON-1 at a transcriptional, translational, and functional levels using the SSTR2-directed radioligand, 18F-FET-βAG-TOCA ([18F]-FETO) (150% increase [18F]-FETO uptake, p 

Original publication

DOI

10.1016/j.ejca.2022.09.009

Type

Journal article

Journal

Eur J Cancer

Publication Date

11/2022

Volume

176

Pages

110 - 120

Keywords

Epigenetic modification, Guadecitabine, Neuroendocrine tumours, Peptide receptor radionuclide therapy, SSTR2, Humans, Receptors, Somatostatin, Neuroendocrine Tumors, Azacitidine, Epigenesis, Genetic, Somatostatin, Octreotide