Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We have investigated the short-term effects of the saturated free fatty acid (FFA) palmitate on pancreatic alpha-cells. Palmitate (0.5 or 1 mmol/l bound to fatty acid-free albumin) stimulated glucagon secretion from intact mouse islets 1.5- to 2-fold when added in the presence of 1-15 mmol/l glucose. Palmitate remained stimulatory in islets depolarized with 30 mmol/l extracellular K(+) or exposed to forskolin, but it did not remain stimulatory after treatment with isradipine or triacsin C. The stimulatory action of palmitate on secretion correlated with a 3.5-fold elevation of intracellular free Ca(2+) when applied in the presence of 15 mmol/l glucose, a 40% stimulation of exocytosis (measured as increases in cell capacitance), and a 25% increase in whole-cell Ca(2+) current. The latter effect was abolished by isradipine, suggesting that palmitate selectively modulates l-type Ca(2+) channels. The effect of palmitate on exocytosis was not mediated by palmitoyl-CoA, and intracellular application of this FFA metabolite decreased rather than enhanced Ca(2+)-induced exocytosis. The stimulatory effects of palmitate on glucagon secretion were paralleled by a approximately 50% inhibition of somatostatin release. We conclude that palmitate increases alpha-cell exocytosis principally by enhanced Ca(2+) entry via l-type Ca(2+) channels and, possibly, relief from paracrine inhibition by somatostatin released by neighboring delta-cells.

Type

Journal article

Journal

Diabetes

Publication Date

11/2004

Volume

53

Pages

2836 - 2843

Keywords

Animals, Colforsin, Diazoxide, Glucagon, Islets of Langerhans, Isradipine, Kinetics, Membrane Potentials, Mice, Mice, Inbred Strains, Palmitic Acid, Potassium, Triazenes