Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Disruption of microenvironment and decrease in oxygen supply during isolation and culture lead to pancreatic islet injury and their poor survival after transplantation. This study aimed to create a matrix for culturing islets, using fibrin as scaffold and perfluorodecalin as oxygen diffusion enhancing medium. Human pancreatic islets were divided in four groups: control, islets cultured in fibrin, islets in fibrin containing non-emulsified perfluorodecalin, and finally islets in fibrin supplemented with emulsified perfluorodecalin. After an overnight culture, cell damage (viability, proinsulin and insulin unregulated release, apoptosis (caspase-3 activation), secretory function, and presence of hypoxia markers (HIF-1a and VEGF expression) were assessed. Islets cultured in a matrix, had similar islet viability to controls (no matrix) but decreased levels of active caspase-3 and unregulated hormone release, but high level of hypoxia markers expression. Although the supplementation of fibrin with non-emulsified perfluorodecalin improves secretory response, there was no decrease in hypoxia markers expression. In contrast, emulsified perfluorodecalin added to the matrix improved islet function, islet viability and maintained level of hypoxia markers similar to control. Fibrin matrix supplemented with emulsified perfluorodecalin can provide a beneficial physical and chemical environment for improved pancreatic human islet function and viability in vitro.

Original publication




Journal article



Publication Date





9282 - 9289


Cell Nucleus, Extracellular Matrix, Fibrin, Fluorocarbons, Humans, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Insulin, Islets of Langerhans, Organ Culture Techniques, Protein Transport, Tissue Survival, Vascular Endothelial Growth Factor A