Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Heart Failure (HF) significantly impacts approximately 26 million people worldwide, causing disruptions in the normal functioning of their hearts. The estimation of left ventricular ejection fraction (LVEF) plays a crucial role in the diagnosis, risk stratification, treatment selection, and monitoring of heart failure. However, achieving a definitive assessment is challenging, necessitating the use of echocardiography. Electrocardiogram (ECG) is a relatively simple, quick to obtain, provides continuous monitoring of patient's cardiac rhythm, and cost-effective procedure compared to echocardiography. In this study, we compare several regression models (support vector machine (SVM), extreme gradient boosting (XGBOOST), gaussian process regression (GPR) and decision tree) for the estimation of LVEF for three groups of HF patients at hourly intervals using 24-hour ECG recordings. Data from 303 HF patients with preserved, mid-range, or reduced LVEF were obtained from a multicentre cohort (American and Greek). ECG extracted features were used to train the different regression models in one-hour intervals. To enhance the best possible LVEF level estimations, hyperparameters tuning in nested loop approach was implemented (the outer loop divides the data into training and testing sets, while the inner loop further divides the training set into smaller sets for cross-validation). LVEF levels were best estimated using rational quadratic GPR and fine decision tree regression models with an average root mean square error (RMSE) of 3.83% and 3.42%, and correlation coefficients of 0.92 (p<0.01) and 0.91 (p<0.01), respectively. Furthermore, according to the experimental findings, the time periods of midnight-1 am, 8-9 am, and 10-11 pm demonstrated to be the lowest RMSE values between the actual and predicted LVEF levels. The findings could potentially lead to the development of an automated screening system for patients with coronary artery disease (CAD) by using the best measurement timings during their circadian cycles.

Original publication

DOI

10.1371/journal.pone.0295653

Type

Journal article

Journal

PLoS One

Publication Date

2023

Volume

18

Keywords

Humans, Stroke Volume, Ventricular Function, Left, Heart Failure, Electrocardiography, Echocardiography