Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Transforming growth factor-β1 (TGF-β1) plays an important role on fibrogenesis in heart disease. MicroRNAs have exhibited as crucial regulators of cardiac homeostasis and remodeling in various heart diseases. MiR-19a-3p/19b-3p expresses with low levels in the plasma of heart failure patients. The purpose of our study is to determine the role of MiR-19a-3p/19b-3p in regulating autophagy-mediated fibrosis of human cardiac fibroblasts. We elucidate our hypothesis in clinical samples and human cardiac fibroblasts (HCF) to provide valuable basic information. TGF-β1 promotes collagen I α2 and fibronectin synthesis in HCF and that is paralleled by autophagic activation in these cells. Pharmacological inhibition of autophagy by 3-methyladenine decreases the fibrotic response, while autophagy induction of rapamycin increases the response. BECN1 knockdown and Atg5 over-expression either inhibits or enhances the fibrotic effect of TGF-β1 in experimental HCF. Furthermore, miR-19a-3p/19b-3p mimics inhibit epithelial mesenchymal transition (EMT) and extracellular matrix (ECM) prodution and invasion of HCF. Functional studies suggest that miR-19a-3p/19b-3p inhibits autophagy of HCF through targeting TGF-β R II mRNA. Moreover, enhancement of autophagy rescues inhibition effect of miR-19a-3p/19b-3p on Smad 2 and Akt phosphorylation through TGF-β R II signaling. Our study uncovers a novel mechanism that miR-19a-3p/19b-3p inhibits autophagy-mediated fibrogenesis by targeting TGF-β R II.

Original publication

DOI

10.1038/srep24747

Type

Journal article

Journal

Sci Rep

Publication Date

21/04/2016

Volume

6

Keywords

3' Untranslated Regions, Autophagy, Binding Sites, Biomarkers, Cell Line, Cell Proliferation, Cells, Cultured, Fibroblasts, Fibrosis, Gene Expression Regulation, Heart Valves, Humans, MicroRNAs, Myocardium, Protein Serine-Threonine Kinases, RNA Interference, Receptor, Transforming Growth Factor-beta Type II, Receptors, Transforming Growth Factor beta, Transforming Growth Factor beta1