Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

AIMS: Accurate staging of hypertension-related cardiac changes, before the development of significant left ventricular hypertrophy, could help guide early prevention advice. We evaluated whether a novel semi-supervised machine learning approach could generate a clinically meaningful summary score of cardiac remodelling in hypertension. METHODS AND RESULTS: A contrastive trajectories inference approach was applied to data collected from three UK studies of young adults. Low-dimensional variance was identified in 66 echocardiography variables from participants with hypertension (systolic ≥160 mmHg) relative to a normotensive group (systolic < 120 mmHg) using a contrasted principal component analysis. A minimum spanning tree was constructed to derive a normalized score for each individual reflecting extent of cardiac remodelling between zero (health) and one (disease). Model stability and clinical interpretability were evaluated as well as modifiability in response to a 16-week exercise intervention. A total of 411 young adults (29 ± 6 years) were included in the analysis, and, after contrastive dimensionality reduction, 21 variables characterized >80% of data variance. Repeated scores for an individual in cross-validation were stable (root mean squared deviation = 0.1 ± 0.002) with good differentiation of normotensive and hypertensive individuals (area under the receiver operating characteristics 0.98). The derived score followed expected hypertension-related patterns in individual cardiac parameters at baseline and reduced after exercise, proportional to intervention compliance (P = 0.04) and improvement in ventilatory threshold (P = 0.01). CONCLUSION: A quantitative score that summarizes hypertension-related cardiac remodelling in young adults can be generated from a computational model. This score might allow more personalized early prevention advice, but further evaluation of clinical applicability is required.

Original publication




Journal article


Eur Heart J Imaging Methods Pract

Publication Date





cardiac remodelling score, echocardiography, hypertension, machine learning, semi-supervised, young adults