Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hyperpolarized carbon 13 MRI (13C MRI) is a novel imaging approach that can noninvasively probe tissue metabolism in both normal and pathologic tissues. The process of hyperpolarization increases the signal acquired by several orders of magnitude, allowing injected 13C-labeled molecules and their downstream metabolites to be imaged in vivo, thus providing real-time information on kinetics. To date, the most important reaction studied with hyperpolarized 13C MRI is exchange of the hyperpolarized 13C signal from injected [1-13C]pyruvate with the resident tissue lactate pool. Recent preclinical and human studies have shown the role of several biologic factors such as the lactate dehydrogenase enzyme, pyruvate transporter expression, and tissue hypoxia in generating the MRI signal from this reaction. Potential clinical applications of hyperpolarized 13C MRI in oncology include using metabolism to stratify tumors by grade, selecting therapeutic pathways based on tumor metabolic profiles, and detecting early treatment response through the imaging of shifts in metabolism that precede tumor structural changes. This review summarizes the foundations of hyperpolarized 13C MRI, presents key findings from human cancer studies, and explores the future clinical directions of the technique in oncology. Keywords: Hyperpolarized Carbon 13 MRI, Molecular Imaging, Cancer, Tissue Metabolism © RSNA, 2023.

Original publication




Journal article


Radiol Imaging Cancer

Publication Date





Cancer, Hyperpolarized Carbon 13 MRI, Molecular Imaging, Tissue Metabolism, Humans, Medical Oncology, Magnetic Resonance Imaging, Carbon Isotopes, Lactic Acid