Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

AIM: The Wnt/β-catenin signaling network offers potential targets to diagnose and uncouple obesity from its metabolic complications. In this study, we investigate the role of the Wnt antagonist, secreted frizzled-related protein 1 (SFRP1), in promoting adipogenesis in vitro and adipose tissue expansion in vivo. METHODS: We use a combination of human and murine, in vivo and in vitro models of adipogenesis, adipose tissue expansion and obesity-related metabolic syndrome to profile the involvement of SFRP1. RESULTS: SFRP1 is expressed in both murine and human mature adipocytes. The expression of SFRP1 is induced during in vitro adipogenesis, and SFRP1 is preferentially expressed in mature adipocytes in human adipose tissue. Constitutive ectopic expression of SFRP1 is proadipogenic and inhibits the Wnt/β-catenin signaling pathway. In vivo endogenous levels of adipose SFRP1 are regulated in line with proadipogenic states. However, in longitudinal studies of high-fat-diet-fed mice, we observed a dynamic temporal but biphasic regulation of endogenous SFRP1. In agreement with this profile, we observed that SFRP1 expression in human tissues peaks in patients with mild obesity and gradually falls in morbidly obese subjects. CONCLUSIONS: Our results suggest that SFRP1 is an endogenous modulator of Wnt/β-catenin signaling and participates in the paracrine regulation of human adipogenesis. The reduced adipose expression of SFRP1 in morbid obesity and its knock-on effect to prevent further adipose tissue expansion may contribute to the development of metabolic complications in these individuals.

Original publication

DOI

10.1038/ijo.2010.107

Type

Journal article

Journal

Int J Obes (Lond)

Publication Date

12/2010

Volume

34

Pages

1695 - 1705

Keywords

Adipocytes, White, Adipogenesis, Adipose Tissue, White, Aged, Animals, Cell Differentiation, Female, Gene Expression, Humans, Male, Mice, Obesity, Obesity, Morbid, Proteins, Signal Transduction, Wnt Proteins, beta Catenin