Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) is critically required for adipogenesis. PPARgamma exists as two isoforms, gamma1 and gamma2. PPARgamma2 is the more potent adipogenic isoform in vitro and is normally restricted to adipose tissues, where it is regulated more by nutritional state than PPARgamma1. To elucidate the relevance of the PPARgamma2 in vivo, we generated a mouse model in which the PPARgamma2 isoform was specifically disrupted. Despite similar weight, body composition, food intake, energy expenditure, and adipose tissue morphology, male mice lacking the gamma2 isoform were more insulin resistant than wild-type animals when fed a regular diet. These results indicate that insulin resistance associated with ablation of PPARgamma2 is not the result of lipodystrophy and suggests a specific role for PPARgamma2 in maintaining insulin sensitivity independently of its effects on adipogenesis. Furthermore, PPARgamma2 knockout mice fed a high-fat diet did not become more insulin resistant than those on a normal diet, despite a marked increase in their mean adipocyte cell size. These findings suggest that PPARgamma2 is required for the maintenance of normal insulin sensitivity in mice but also raises the intriguing notion that PPARgamma2 may be necessary for the adverse effects of a high-fat diet on carbohydrate metabolism.

Original publication

DOI

10.2337/diabetes.54.6.1706

Type

Journal article

Journal

Diabetes

Publication Date

06/2005

Volume

54

Pages

1706 - 1716

Keywords

Adipocytes, Animals, Body Composition, Dietary Fats, Energy Intake, Energy Metabolism, Feeding Behavior, Gene Expression Profiling, Gene Expression Regulation, Insulin, Insulin Resistance, Mice, Mice, Knockout, PPAR gamma, Protein Isoforms