Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

During metaphase, chromosomes are aligned in a lineup at the equatorial plane of the spindle to ensure synchronous poleward movement of chromatids in anaphase and proper nuclear reformation at the end of mitosis. Chromosome alignment relies on microtubules, several types of motor protein and numerous other microtubule-associated and regulatory proteins. Because of the multitude of players involved, the mechanisms of chromosome alignment are still under debate. Here, we discuss the current models of alignment based on poleward pulling forces exerted onto sister kinetochores by kinetochore microtubules, which show length-dependent dynamics and undergo poleward flux, and polar ejection forces that push the chromosome arms away from the pole. We link these models with the recent ideas based on mechanical coupling between bridging and kinetochore microtubules, where sliding of bridging microtubules promotes overlap length-dependent sliding of kinetochore fibers and thus the alignment of sister kinetochores at the spindle equator. Finally, we discuss theoretical models of forces acting on chromosomes during metaphase.

Original publication




Journal article


Curr Biol

Publication Date





R574 - R585


Anaphase, Biomechanical Phenomena, Chromosomes, Kinetochores, Metaphase, Microtubules, Mitosis, Spindle Apparatus