Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Hepatitis B virus (HBV) vaccine escape mutants (VEM) are increasingly described, threatening progress in control of this virus worldwide. Here we studied the relationship between host genetic variation, vaccine immunogenicity and viral sequences implicating VEM emergence. In a cohort of 1,096 Bangladeshi children, we identified human leukocyte antigen (HLA) variants associated with response vaccine antigens. Using an HLA imputation panel with 9,448 south Asian individuals DPB1*04:01 was associated with higher HBV antibody responses (p=4.5×10-30). The underlying mechanism is a result of higher affinity binding of HBV surface antigen epitopes to DPB1*04:01 dimers. This is likely a result of evolutionary pressure at the HBV surface antigen 'a-determinant' segment incurring VEM specific to HBV. Prioritizing pre-S isoform HBV vaccines may tackle the rise of HBV vaccine evasion.

Original publication

DOI

10.1101/2023.06.26.23291885

Type

Journal article

Journal

medRxiv

Publication Date

29/06/2023

Keywords

Genome-wide association studies, escape variants, hepatitis B virus, human leukocyte antigen, major histocompatibility complex, vaccination