Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Megakaryopoiesis is a complex process that involves major cellular and nuclear changes and relies on controlled coordination of cellular proliferation and differentiation. These mechanisms are orchestrated in part by transcriptional regulators. The key hematopoietic transcription factor stem cell leukemia (SCL)/TAL1 is required in early hematopoietic progenitors for specification of the megakaryocytic lineage. These early functions have, so far, prevented full investigation of its role in megakaryocyte development in loss-of-function studies. Here, we report that SCL critically controls terminal megakaryocyte maturation. In vivo deletion of Scl specifically in the megakaryocytic lineage affects all key attributes of megakaryocyte progenitors (MkPs), namely, proliferation, ploidization, cytoplasmic maturation, and platelet release. Genome-wide expression analysis reveals increased expression of the cell-cycle regulator p21 in Scl-deleted MkPs. Importantly, p21 knockdown-mediated rescue of Scl-mutant MkPs shows full restoration of cell-cycle progression and partial rescue of the nuclear and cytoplasmic maturation defects. Therefore, SCL-mediated transcriptional control of p21 is essential for terminal maturation of MkPs. Our study provides a mechanistic link between a major hematopoietic transcriptional regulator, cell-cycle progression, and megakaryocytic differentiation.

Original publication

DOI

10.1182/blood-2011-01-328765

Type

Journal article

Journal

Blood

Publication Date

21/07/2011

Volume

118

Pages

723 - 735

Keywords

Animals, Basic Helix-Loop-Helix Transcription Factors, Bone Marrow Cells, Cell Division, Cell Lineage, Cells, Cultured, Cyclin-Dependent Kinase Inhibitor p21, Cytoplasm, Gene Knockdown Techniques, Hematopoietic Stem Cells, Megakaryocytes, Mice, Microscopy, Electron, Polyploidy, Proto-Oncogene Proteins, T-Cell Acute Lymphocytic Leukemia Protein 1, Thrombocytopenia, Thrombopoiesis