Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Diabetes is a chronic disease affecting 415 million people worldwide. People with type 1 diabetes mellitus (T1DM) need to self-administer insulin to maintain blood glucose (BG) levels in a normal range, which is usually a very challenging task. Developing a reliable glucose forecasting model would have a profound impact on diabetes management, since it could provide predictive glucose alarms or insulin suspension at low-glucose for hypoglycemia minimisation. Recently, deep learning has shown great potential in healthcare and medical research for diagnosis, forecasting and decision-making. In this work, we introduce a deep learning model based on a dilated recurrent neural network (DRNN) to provide 30-min forecasts of future glucose levels. Using dilation, the DRNN model gains a much larger receptive field in terms of neurons aiming at capturing long-term dependencies. A transfer learning technique is also applied to make use of the data from multiple subjects. The proposed approach outperforms existing glucose forecasting algorithms, including autoregressive models (ARX), support vector regression (SVR) and conventional neural networks for predicting glucose (NNPG) (e.g. RMSE = NNPG, 22.9 mg/dL; SVR, 21.7 mg/dL; ARX, 20.1 mg/dl; DRNN, 18.9 mg/dL on the OhioT1DM dataset). The results suggest that dilated connections can improve glucose forecasting performance efficiently.

Original publication

DOI

10.1007/s41666-020-00068-2

Type

Journal article

Journal

Journal of healthcare informatics research

Publication Date

09/2020

Volume

4

Pages

308 - 324

Addresses

Department of Electronic and Electrical Engineering, Imperial College London, London, SW7 2AZ UK.