Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Within the hematopoietic lineage, the monoclonal antibody (MoAb) CD66 reacts with cells of the granulocyte lineage, but not with the majority of progenitor cells from human bone marrow. Our previous studies have shown that CD66 binds specifically to at least three carcinoembryonic antigen (CEA) superfamily members, ie, CEA itself, nonspecific cross-reacting antigen (NCA), and CGM1, but not to CGM6 (NCA-95). In this report, we show that CD66 will also identify the biliary glycoproteins (BGP). A full-length cDNA for the BGPc molecule (a cytoplasmic splice variant of BGPa) was isolated by expression cloning using the CD66 MoAbs. This protein has an identical extracellular and transmembrane sequence to BGPa with one N-terminal IgV like domain, three IgC-like extracellular domains (A1, B1, and A2), plus a transmembrane domain, but the cytoplasmic domain is spliced by 53 nucleotides. Reverse transcriptase-polymerase chain reaction experiments show that this splice variant can be detected in colonic carcinoma cell lines, in primary colonic adenocarcinomas, and in myeloid and B-cell lines to varying degrees. Quantitative analyses of BGPc RNA expression by RNase protection indicate that abundant levels occur only in the colonic, but not in the hematopoietic, cell lines tested. Studies presented here show that BGPc mediates homotypic adhesion and suggest that the cytoplasmic splicing does not alter the initial homotypic adhesion properties of BGPa.


Journal article



Publication Date





200 - 210


MRC Molecular Haematology Unit, Institute of Molecular Medicine, Oxford, UK.


CHO Cells, Animals, Rats, Glycoproteins, Cell Adhesion Molecules, Carcinoembryonic Antigen, Antigens, Differentiation, Antigens, CD, Antibodies, Monoclonal, Cloning, Molecular, Cell Adhesion, Amino Acid Sequence, Base Sequence, Molecular Sequence Data, Cricetinae