Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Alpha thalassaemia myelodysplastic syndrome (ATMDS) is an unusual complication of chronic myeloid malignancy that is associated with a striking red cell phenotype. It represents an acquired form of alpha-thalassaemia that most commonly arises in the context of myelodysplasia. It has recently been shown that this condition occurs in association with somatic mutations of a known X-encoded trans-acting regulator of alpha globin gene (HBA) expression, ATRX. There is an unexplained, strong male preponderance of individuals with the ATMDS phenotype with a >5:1 male-female ratio and furthermore, all the somatic ATRX mutations described to date have been in males. Here we report the identification, in a single centre, of two females with ATMDS and mutations in the ATRX gene, proving that ATMDS associated with such mutations may occur, albeit rarely, in females. It seemed possible that females might be less likely to develop ATMDS if the inactivated copy of the ATRX gene (ATRX) became progressively re-activated throughout life. This study ruled out this hypothesis by investigating the pattern of ATRX inactivation in a cross-sectional analysis of normal females at ages ranging from newborn to 90 years.

Original publication




Journal article


Br J Haematol

Publication Date





538 - 545


Aged, Cross-Sectional Studies, DNA Helicases, DNA Methylation, DNA Mutational Analysis, Epigenesis, Genetic, Female, Humans, Male, Middle Aged, Mutation, Myelodysplastic Syndromes, Nuclear Proteins, Sex Distribution, X Chromosome Inactivation, X-linked Nuclear Protein, alpha-Thalassemia