Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Context: Blood lipid levels are linked to the risk of cardiovascular disease and regulated by genetic factors. A low-frequency polymorphism Arg82Cys (rs72836561) in the membrane protein nepmucin, encoded by CD300LG, is associated with lower fasting concentration of high-density lipoprotein cholesterol (HDLc) and higher fasting triglycerides. However, whether the variant is linked to postprandial lipids and glycemic status remains elusive. Objective: Here, we augment the genetic effect of Arg82Cys on fasting plasma concentrations of HDL subclasses, postprandial lipemia after a standardized high-fat meal, and glycemic status to further untangle its role in HDL metabolism. Methods: We elucidated fasting associations with HDL subclasses in a population-based cohort study (Oxford BioBank, OBB), including 4522 healthy men and women. We investigated fasting and postprandial consequences on HDL metabolism in recall-by-genotype (RbG) studies (fasting: 20 carrier/20 noncarrier; postprandial: 7 carrier/17 noncarrier), and shed light on the synergistic interaction with glycemic status. Results: A lower fasting plasma concentration of cholesterol in large HDL particles was found in healthy male carriers of the Cys82 polymorphism compared to noncarriers, both in the OBB (P = .004) and RbG studies (P = .005). In addition, the Cys82 polymorphism was associated with low fasting plasma concentrations of ApoA1 (P = .008) in the OBB cohort. On the contrary, we did not find differences in postprandial lipemia or 2-hour plasma glucose levels. Conclusion: Taken together, our results indicate an association between the Arg82Cys variant and a lower concentration of HDL particles and HDLc, especially in larger HDL subclasses, suggesting a link between nepmucin and HDLc metabolism or maturation.

Original publication




Journal article


J Endocr Soc

Publication Date





apolipoproteins, cholesterol transport, human genetics, lipid metabolism, metabolism, triglycerides