Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

While critical for neurotransmitter synthesis, 14-3-3 proteins are often assumed to have redundant functions due to their ubiquitous expression, but despite this assumption, various 14-3-3 isoforms have been implicated in regulating metabolism. We previously reported contributions of 14-3-3ζ in β cell function, but these studies were performed in tumor-derived MIN6 cells and systemic KO mice. To further characterize the regulatory roles of 14-3-3ζ in β cell function, we generated β cell-specific 14-3-3ζ-KO mice. Although no effects on β cell mass were detected, potentiated glucose-stimulated insulin secretion (GSIS), mitochondrial function, and ATP synthesis were observed. Deletion of 14-3-3ζ also altered the β cell transcriptome, as genes associated with mitochondrial respiration and oxidative phosphorylation were upregulated. Acute 14-3-3 protein inhibition in mouse and human islets recapitulated the enhancements in GSIS and mitochondrial function, suggesting that 14-3-3ζ is the critical isoform in β cells. In dysfunctional db/db islets and human islets from type 2 diabetic donors, expression of Ywhaz/YWHAZ, the gene encoding 14-3-3ζ, was inversely associated with insulin secretion, and pan-14-3-3 protein inhibition led to enhanced GSIS and mitochondrial function. Taken together, this study demonstrates important regulatory functions of 14-3-3ζ in the regulation of β cell function and provides a deeper understanding of how insulin secretion is controlled in β cells.

Original publication




Journal article


JCI Insight

Publication Date





Adaptor proteins, Beta cells, Endocrinology, Metabolism, Mitochondria, 14-3-3 Proteins, Animals, Glucose, Insulin, Insulin Secretion, Insulin-Secreting Cells, Mice, Mitochondria