Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Endocrine cells in the mammalian pituitary are arranged into three-dimensional homotypic networks that wire the gland and act to optimise hormone output by allowing the transmission of information between cell ensembles in a temporally precise manner. Despite this, the structure-function relationships that allow cells belonging to these networks to display coordinated activity remain relatively uncharacterised. This review discusses the recent technological advances that have allowed endocrine cell network structure and function to be probed and the mathematical models that can be used to analyse and present the resulting data. In particular, we focus on the mechanisms that allow endocrine cells to dynamically function as a population to drive hormone release as well as the experimental and theoretical methods that are used to track and model information flow through the network.

Original publication




Journal article


J Neuroendocrinol

Publication Date





1217 - 1225


Animals Humans *Models, Theoretical Neurons/physiology Pituitary Gland/cytology/*physiology