Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

AIMS: Genetic variation in the fatty acid translocase (CD36) gene has been shown in animal models to affect several risk factors for the development of left-ventricular hypertrophy, but this phenotype has not, thus far, been investigated in humans. We examined the relationship between common genetic polymorphisms in the CD36 gene and left-ventricular mass. METHODS AND RESULTS: We studied a cohort of 255 families comprising 1425 individuals ascertained via a hypertensive proband. Seven single-nucleotide polymorphisms which together tagged common genetic variation in the CD36 gene were genotyped using a SEQUENOM MALDI-TOF instrument. There was evidence of association between the rs1761663 polymorphism in intron 1 of the CD36 gene and left-ventricular mass determined either by echocardiography (P=0.003, N=780) or electrocardiography (P=0.001, N=814). There was also association between rs1761663 genotype and body mass index (P<0.001, N=1354). Genotype was associated with between 2 and 8% differences in these phenotypes per allele. After adjustment for the effect of body mass index, there remained significant associations between genotype and left ventricular mass measured either by echo (P=0.017) or ECG (P=0.007). CONCLUSIONS: Genotype at the rs1761663 polymorphism has independent effects both on body mass index and left-ventricular mass. Genes with such pleiotropic effects may be particularly attractive therapeutic targets for interventions to modify multiple risk factors for cardiovascular events.

Original publication

DOI

10.1097/HJH.0b013e3283440115

Type

Journal article

Journal

J Hypertens

Publication Date

04/2011

Volume

29

Pages

690 - 695

Keywords

CD36 Antigens, Cohort Studies, Electrocardiography, Heart Ventricles, Humans, Introns, Organ Size, Polymorphism, Genetic, Polymorphism, Single Nucleotide