Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Tracking the tricuspid valve (TV) in magnetic resonance imaging (MRI) long-axis cine images has the potential to aid in the evaluation of right ventricular dysfunction, which is common in congenital heart disease and pulmonary hypertension. However, this annotation task remains difficult and time-demanding as the TV moves rapidly and is barely distinguishable from the myocardium. This study presents TVnet, a novel dual-stage deep learning pipeline based on ResNet-50 and automated image linear transformation, able to automatically derive tricuspid annular plane systolic excursion. Stage 1 uses a trained network for a coarse detection of the TV points, which are used by stage 2 to reorient the cine into a standardized size, cropping, resolution, and heart orientation and to accurately locate the TV points with another trained network. The model was trained and evaluated on 4170 images from 140 patients with diverse cardiovascular pathologies. A baseline model without standardization achieved a Euclidean distance error of 4.0 ± 3.1 mm and a clinical-metric agreement of ICC = 0.87, whereas a standardized model improved the agreement to 2.4 ± 1.7 mm and an ICC = 0.94, on par with an evaluated inter-observer variability of 2.9 ± 2.9 mm and an ICC = 0.92, respectively. This novel dual-stage deep learning pipeline substantially improved the annotation accuracy compared to a baseline model, paving the way towards reliable right ventricular dysfunction assessment with MRI.

Original publication

DOI

10.1007/978-3-030-87231-1_55

Type

Conference paper

Publication Date

01/01/2021

Volume

12906 LNCS

Pages

567 - 576