Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: Diffusion-weighted imaging (DWI) is mainly used in acute stroke, and signal evolution in the acute phase has been studied extensively. However, patients with a minor stroke frequently present late. Recent studies suggest that DWI may be helpful at this stage, but only very few published data exist on the evolution of the DW-signal in the weeks and months after a stroke. We performed a follow-up study of DWI in the late stages after a minor stroke. METHODS: 28 patients who presented 48 hours to 14 days after a minor stroke underwent serial MRI at baseline, 4 weeks, 8 weeks, 12 weeks, 6 months and>or=9 months after their event. Signal intensity within the lesion was determined on T2-weighted images, DW-images and the Apparent Diffusion Coefficient (ADC) map at each time-point, and ratios were calculated with contralateral normal values (T2r, DWIr, ADCr). RESULTS: T2r was increased in all patients from the beginning, and showed no clear temporal evolution. ADCr normalized within 8 weeks in 83% of patients, but still continued to increase for up to 6 months after the event. The DW-signal decreased over time, but was still elevated in 6 patients after>or=6 months. The evolution of ADCr and DWIr showed statistically highly significant inter-individual variation (p<0.0001), which was not accounted for by age, sex, infarct size or infarct location. CONCLUSION: The ADC and the DW-signal may continue to evolve for several months after a minor ischaemic stroke. Signal evolution is highly variable between individuals. Further studies are required to determine which factors influence the evolution of the ADC and the DW-signal.

Original publication




Journal article


J Neurol

Publication Date





375 - 383


Adult, Aged, Aged, 80 and over, Brain Mapping, Diffusion Magnetic Resonance Imaging, Disease Progression, Echo-Planar Imaging, Female, Follow-Up Studies, Humans, Image Processing, Computer-Assisted, Male, Middle Aged, Stroke, Time Factors