Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The 5-reductases (5α-reductase types 1, 2 and 3 [5αR1-3], 5β-reductase [5βR]) are steroid hormone metabolising enzymes that hold fundamental roles in human physiology and pathology. They possess broad substrate specificity converting many steroid hormones to their 5α- and 5β-reduced metabolites, as well as catalysing crucial steps in bile acid synthesis. 5αRs are fundamentally important in urogenital development by converting testosterone to the more potent androgen 5α-dihydrotestosterone (5αDHT); inactivating mutations in 5αR2 lead to disorders of sexual development. Due to the ability of the 5αRs to generate 5αDHT, they are an established drug target, and 5αR inhibitors are widely used for the treatment of androgen-dependent benign or malignant prostatic diseases. There is an emerging body of evidence to suggest that the 5-reductases can impact upon aspects of health and disease (other than urogenital development); alterations in their expression and activity have been associated with metabolic disease, polycystic ovarian syndrome, inflammation and bone metabolism. This review will outline the evidence base for the extra-urogenital role of 5-reductases from in vitro cell systems, pre-clinical models and human studies, and highlight the potential adverse effects of 5αR inhibition in human health and disease.

Original publication




Journal article


J Steroid Biochem Mol Biol

Publication Date





5α-reductase, 5β-reductase, AKR1D1, metabolism, steroid hormones