Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The myelodysplastic syndromes (MDS) are common myeloid malignancies. Mutations in genes encoding different components of the spliceosome occur in more than half of all MDS patients. SF3B1 is the most frequently mutated splicing factor gene in MDS, and there is a strong association between SF3B1 mutations and the presence of ring sideroblasts in the bone marrow of MDS patients. It has been recently proposed that SF3B1 mutant MDS should be recognized as a distinct nosologic entity. Splicing factor mutations cause aberrant pre-mRNA splicing of many target genes, some of which have been shown to impact on hematopoiesis in functional studies. Emerging data show that some of the downstream effects of different mutated splicing factors converge on common cellular processes, such as hyperactivation of NF-κB signaling and increased R-loops. The aberrantly spliced target genes and the dysregulated pathways and cellular processes associated with splicing factor mutations provided the rationale for new potential therapeutic approaches to target MDS cells with mutations of SF3B1 and other splicing factors.

Original publication

DOI

10.1016/j.jbior.2020.100776

Type

Journal article

Journal

Adv Biol Regul

Publication Date

22/12/2020

Keywords

Myelodysplastic syndromes, NF-κB signaling, R-loops, RNA splicing, SF3B1 mutation, Splicing factor gene mutations