Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND:Mechanical thrombectomy (MT) is a time-sensitive emergency procedure for patients who had ischaemic stroke leading to improved health outcomes. Health systems need to ensure that MT is delivered to as many patients as quickly as possible. Using decision modelling, we aimed to evaluate the cost-effectiveness of secondary transfer by helicopter emergency medical services (HEMS) compared with ground emergency medical services (GEMS) of rural patients eligible for MT in England. METHODS:The model consisted of (1) a short-run decision tree with two branches, representing secondary transfer transportation strategies and (2) a long-run Markov model for a theoretical population of rural patients with a confirmed ischaemic stroke. Strategies were compared by lifetime costs: quality-adjusted life years (QALYs), incremental cost per QALY gained and net monetary benefit. Sensitivity and scenario analyses explored uncertainty around parameter values. RESULTS:We used the base case of early-presenting (<6 hours to arterial puncture) patient aged 75 years who had stroke to compare HEMS and GEMS. This produced an incremental cost-effectiveness ratio (ICER) of £28 027 when a 60 min reduction in travel time was assumed. Scenario analyses showed the importance of the reduction in travel time and futile transfers in lowering ICERs. For late presenting (>6 hours to arterial puncture), ground transportation is the dominant strategy. CONCLUSION:Our model indicates that using HEMS to transfer patients who had stroke eligible for MT from remote hospitals in England may be cost-effective when: travel time is reduced by at least 60 min compared with GEMS, and a £30 000/QALY threshold is used for decision-making. However, several other logistic considerations may impact on the use of air transportation.

Original publication




Journal article


Emergency medicine journal : EMJ

Publication Date



Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.