Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Stem cell transplantation is used widely in the management of a range of diseases of the hemopoietic system. Patients are immunosuppressed profoundly in the early posttransplant period, and reactivation of cytomegalovirus (CMV) remains a significant cause of morbidity and mortality. Adoptive transfer of donor-derived CMV-specific CD8+ T cell clones has been shown to reduce the rate of viral reactivation; however, the complexity of this approach severely limits its clinical application. We have purified CMV-specific CD8+ T cells from the blood of stem cell transplant donors using staining with HLA-peptide tetramers followed by selection with magnetic beads. CMV-specific CD8+ cells were infused directly into nine patients within 4 h of selection. Median cell dosage was 8.6 x 10(3)/kg with a purity of 98% of all T cells. CMV-specific CD8+ T cells became detectable in all patients within 10 d of infusion, and TCR clonotype analysis showed persistence of infused cells in two patients studied. CMV viremia was reduced in every case and eight patients cleared the infection, including one patient who had a prolonged history of CMV infection that was refractory to antiviral therapy. This novel approach to adoptive transfer has considerable potential for antigen-specific T cell therapy.

Original publication

DOI

10.1084/jem.20040613

Type

Journal article

Journal

J Exp Med

Publication Date

01/08/2005

Volume

202

Pages

379 - 386

Keywords

Adoptive Transfer, Antigens, Viral, CD8-Positive T-Lymphocytes, Cytomegalovirus, Cytomegalovirus Infections, Epitopes, T-Lymphocyte, Female, HLA Antigens, Hematologic Diseases, Humans, Male, Peptides, Stem Cell Transplantation