Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVE: To develop and validate multivariable clinical diagnostic models to assist distinguishing between type 1 and type 2 diabetes in adults aged 18-50. DESIGN: Multivariable logistic regression analysis was used to develop classification models integrating five pre-specified predictor variables, including clinical features (age of diagnosis, body mass index) and clinical biomarkers (GADA and Islet Antigen 2 islet autoantibodies, Type 1 Diabetes Genetic Risk Score), to identify type 1 diabetes with rapid insulin requirement using data from existing cohorts. SETTING: UK cohorts recruited from primary and secondary care. PARTICIPANTS: 1352 (model development) and 582 (external validation) participants diagnosed with diabetes between the age of 18 and 50 years of white European origin. MAIN OUTCOME MEASURES: Type 1 diabetes was defined by rapid insulin requirement (within 3 years of diagnosis) and severe endogenous insulin deficiency (C-peptide <200 pmol/L). Type 2 diabetes was defined by either a lack of rapid insulin requirement or, where insulin treated within 3 years, retained endogenous insulin secretion (C-peptide >600 pmol/L at ≥5 years diabetes duration). Model performance was assessed using area under the receiver operating characteristic curve (ROC AUC), and internal and external validation. RESULTS: Type 1 diabetes was present in 13% of participants in the development cohort. All five predictor variables were discriminative and independent predictors of type 1 diabetes (p<0.001 for all) with individual ROC AUC ranging from 0.82 to 0.85. Model performance was high: ROC AUC range 0.90 (95% CI 0.88 to 0.93) (clinical features only) to 0.97 (95% CI 0.96 to 0.98) (all predictors) with low prediction error. Results were consistent in external validation (clinical features and GADA ROC AUC 0.93 (0.90 to 0.96)). CONCLUSIONS: Clinical diagnostic models integrating clinical features with biomarkers have high accuracy for identifying type 1 diabetes with rapid insulin requirement, and could assist clinicians and researchers in accurately identifying patients with type 1 diabetes.

Original publication




Journal article


BMJ Open

Publication Date





C-peptide, Classification, GADA, IA-2A, Type 1 Diabetes Genetic Risk Score, Type 1 diabetes, Type 2 diabetes