Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

OBJECTIVES: This study was designed to establish the diagnostic accuracy of cardiovascular magnetic resonance (CMR) perfusion imaging at 3-Tesla (T) in suspected coronary artery disease (CAD). BACKGROUND: Myocardial perfusion imaging is considered one of the most compelling applications for CMR at 3-T. The 3-T systems provide increased signal-to-noise ratio and contrast enhancement (compared with 1.5-T), which can potentially improve spatial resolution and image quality. METHODS: Sixty-one patients (age 64 +/- 8 years) referred for elective diagnostic coronary angiography (CA) for investigation of exertional chest pain were studied (before angiogram) with first-pass perfusion CMR at both 1.5- and 3-T and at stress (140 microg/kg/min intravenous adenosine, Adenoscan, Sanofi-Synthelabo, Guildford, United Kingdom) and rest. Four short-axis images were acquired during every heartbeat using a saturation recovery fast-gradient echo sequence and 0.04 mmol/kg Gd-DTPA bolus injection. Quantitative CA served as the reference standard. Perfusion deficits were interpreted visually by 2 blinded observers. We defined CAD angiographically as the presence of > or =1 stenosis of > or =50% diameter in any of the main epicardial coronary arteries or their branches with a diameter of > or =2 mm. RESULTS: The prevalence of CAD was 66%. All perfusion images were found to be visually interpretable for diagnosis. We found that 3-T CMR perfusion imaging provided a higher diagnostic accuracy (90% vs. 82%), sensitivity (98% vs. 90%), specificity (76% vs. 67%), positive predictive value (89% vs. 84%), and negative predictive value (94% vs. 78%) for detection of significant coronary stenoses compared with 1.5-T. The diagnostic performance of 3-T perfusion imaging was significantly greater than that of 1.5-T in identifying both single-vessel disease (area under receiver-operator characteristic [ROC] curve: 0.89 +/- 0.05 vs. 0.70 +/- 0.08; p < 0.05) and multivessel disease (area under ROC curve: 0.95 +/- 0.03 vs. 0.82 +/- 0.06; p < 0.05). There was no difference between field strengths for the overall detection of coronary disease (area under ROC curve: 0.87 +/- 0.05 vs. 0.78 +/- 0.06; p = 0.23). CONCLUSIONS: Our study showed that 3-T CMR perfusion imaging is superior to 1.5-T for prediction of significant single- and multi-vessel coronary disease, and 3-T may become the preferred CMR field strength for myocardial perfusion assessment in clinical practice.

Original publication




Journal article


J Am Coll Cardiol

Publication Date





2440 - 2449


Aged, Cohort Studies, Contrast Media, Coronary Angiography, Coronary Artery Disease, Exercise Test, Female, Fractional Flow Reserve, Myocardial, Humans, Image Enhancement, Image Processing, Computer-Assisted, Magnetic Resonance Angiography, Magnetic Resonance Imaging, Cine, Male, Middle Aged, Probability, Prospective Studies, ROC Curve, Radiographic Image Enhancement, Sensitivity and Specificity, Severity of Illness Index