Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The molecular mechanisms by which troponin (TN)-tropomyosin (TM) regulates the myosin ATPase cycle were investigated using fluorescent probes specifically bound to Cys36 of TM, Cys707 of myosin subfragment-1, and Cys374 of actin incorporated into ghost muscle fibers. Intermediate states of actomyosin were simulated by using nucleotides and non-hydrolysable ATP analogs. Multistep changes in mobility and spatial arrangement of SH1 helix of myosin motor domain and actin subdomain-1 during the ATPase cycle were observed. Each intermediate state of actomyosin induced a definite conformational state and specific position of TM strands on the surface of thin filament. TM increased the amplitude of myosin SH1 helix and actin subdomain-1 movements at transition from weak- to strong-binding states shifting to the center of thin filament at strong-binding and to the periphery of thin filament at weak-binding states. TN modulated those movements in a capital ES, Cyrillicsmall a, Cyrillic(2+)-dependent manner. At high-Ca(2+), TN enhanced the effect of TM on SH1 helix and subdomain-1 movements by transferring TM further to the center of thin filament at strong-binding states. In contrast, at low-Ca(2+), TN inhibited the effect of TM movements, "freezing" actin structure in "OFF" state and TM in the position typical for weak-binding states, resulting in disturbing the interplay of actin and myosin.

Original publication




Journal article


Biochim Biophys Acta

Publication Date





985 - 994


Actins, Animals, Calcium, Fluorescence Polarization, Fluorescent Dyes, Myosins, Protein Conformation, Rabbits, Tropomyosin