Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Stimulation of nitric oxide (NO) release from the coronary endothelium facilitates myocardial relaxation via a cGMP-dependent reduction in myofilament Ca2+ sensitivity. Recent evidence suggests that NO released by a neuronal NO synthase (nNOS) in the myocardium can also hasten left ventricular relaxation; however, the mechanism underlying these findings is uncertain. Here we show that both relaxation (TR50) and the rate of [Ca2+]i transient decay (tau) are significantly prolonged in field-stimulated or voltage-clamped left ventricular myocytes from nNOS-/- mice and in wild-type myocytes (nNOS+/+) after acute nNOS inhibition. Disabling the sarcoplasmic reticulum abolished the differences in TR50 and tau, suggesting that impaired sarcoplasmic reticulum Ca2+ reuptake may account for the slower relaxation in nNOS-/- mice. In line with these findings, disruption of nNOS (but not of endothelial NOS) decreased phospholamban phosphorylation (P-Ser16 PLN), whereas nNOS inhibition had no effect on TR50 or tau in PLN-/- myocytes. Inhibition of cGMP signaling had no effect on relaxation in either group whereas protein kinase A inhibition abolished the difference in relaxation and PLN phosphorylation by decreasing P-Ser16 PLN and prolonging TR50 in nNOS+/+ myocytes. Conversely, inhibition of type 1 or 2A protein phosphatases shortened TR50 and increased P-Ser16 PLN in nNOS-/- but not in nNOS+/+ myocytes, in agreement with data showing increased protein phosphatase activity in nNOS-/- hearts. Taken together, our findings identify a novel mechanism by which myocardial nNOS promotes left ventricular relaxation by regulating the protein kinase A-mediated phosphorylation of PLN and the rate of sarcoplasmic reticulum Ca2+ reuptake via a cGMP-independent effect on protein phosphatase activity.

Original publication

DOI

10.1161/CIRCRESAHA.107.164798

Type

Journal article

Journal

Circ Res

Publication Date

01/02/2008

Volume

102

Pages

242 - 249

Keywords

Animals, Calcium-Binding Proteins, Cyclic AMP-Dependent Protein Kinases, Cyclic GMP, Heart Ventricles, Mice, Mice, Knockout, Muscle Cells, Myocardial Contraction, Nitric Oxide Synthase Type I, Phosphorylation, Sarcoplasmic Reticulum Calcium-Transporting ATPases