Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The recent discovery of a NOS1 gene product (i.e. a neuronal-like isoform of nitric oxide synthase or nNOS) in the mammalian left ventricular (LV) myocardium has provided a new key for the interpretation of the complex experimental evidence supporting a role for myocardial constitutive nitric oxide (NO) production in the regulation of basal and beta-badrenergic cardiac function. Importantly, nNOS gene deletion has been associated with more severe LV remodelling and functional deterioration in murine models of myocardial infarction, suggesting that nNOS-derived NO may also be involved in the myocardial response to injury. To date, the mechanisms by which nNOS influences myocardial pathophysiology remain incompletely understood. In particular, it seems over simplistic to assume that all aspects of the myocardial phenotype of nNOS knockout (nNOS(-/-)) mice are a direct consequence of lack of NO production from this source. Emerging data showing co-localisation of xanthine oxidoreductase (XOR) and nNOS in the sarcoplasmic reticulum of rodents, and increased XOR activity in the nNOS(-/-) myocardium, suggest that nNOS gene deletion may have wider implications on the myocardial redox state. Similarly, the mechanisms regulating the targeting of myocardial nNOS to different subcellular compartments and the functional consequences of intracellular nNOS trafficking have not been fully established. Whether this information could be translated into a better understanding and management of human heart failure remains the most important challenge for future investigations.

Original publication

DOI

10.1113/expphysiol.2006.035493

Type

Journal article

Journal

Exp Physiol

Publication Date

11/2006

Volume

91

Pages

943 - 955

Keywords

Animals, Heart, Humans, Myocardial Contraction, Neurons, Nitric Oxide, Nitric Oxide Synthase, Receptors, Adrenergic, beta, Ventricular Remodeling