Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The class II region of the human major histocompatibility complex (MHC) encodes a polymorphic set of cell surface glycoproteins involved in the regulation of the immune response. Each glycoprotein is a heterodimer composed of a alpha-chain of relative molecular mass (Mr) 34,000 (34 K) and a beta-chain of Mr = 28K. The products of the class II region have been characterized by the mixed lymphocyte reaction, serology, primed lymphocyte typing and DNA cloning. DR, DQ and DP, three subregions containing both alpha- and beta-chains, and two additional loci, DZ alpha and DO beta, locate this gene cluster on the short arm of chromosome 6. The precise genomic organization of these loci have been difficult to determine. Here we describe the use of pulsed-field gel electrophoresis together with restriction endonucleases having few genomic restriction sites and Southern blotting, to determine the order of the subregions and to derive a map for the human class II region. The order of these loci is similar to that of the homologous loci in the murine class II region. Our study establishes the use of pulsed-field gel electrophoresis in mapping large regions of the genome in higher eukaryotes.

Original publication




Journal article



Publication Date





453 - 455


Cell Line, DNA Restriction Enzymes, Electrophoresis, Nucleic Acid Hybridization, Major Histocompatibility Complex