Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Myosins are a large superfamily of actin-dependent molecule motors that carry out many functions in cells. Some myosins are cargo carriers that move processively along actin which means that a single molecule of myosin can take many ATP-dependent steps on actin per initial encounter. Other myosins are designed to work in large ensembles such as myosin thick filaments. In vitro motility assays are a powerful method for studying the function of myosins. These assays in general use small amounts of protein, are simple to implement, and can be done on microscopes commonly found in many laboratories. There are two basic versions of the assay which involve different geometries. In the sliding actin in vitro motility assay, myosin molecules are bound to a coverslip surface in a simply constructed microscopic flow chamber. Fluorescently labeled actin filaments are added to the flow chamber in the presence of ATP, and the movement of these actin filaments powered by the surface-bound myosins is observed. This assay has been used widely for a variety of myosins including both processive and non-processive ones. From this assay, one can easily measure the rate at which myosin is translocating actin. The single-molecule motility assay uses an inverted geometry compared to the sliding actin in vitro motility assay. It is most useful for processive myosins. Here, actin filaments are affixed to the coverslip surface. Fluorescently labeled single molecules of myosins (usually ones with processive kinetics) are introduced, and the movement of single molecules along the actin filaments is observed. This assay typically uses total internal reflection fluorescent (TIRF) microscopy to reduce the background signal arising from myosins in solution. From this assay, one can measure the velocity of movement, the frequency of movement, and the run length. If sufficient photons can be collected, one can use Gaussian fitting of the point spread function to determine the position of the labeled myosin to within a few nanometers which allows for measurement of the step size and the stepping kinetics. Together, these two assays are powerful tools to elucidate myosin function.

Original publication

DOI

10.1007/978-3-0348-0856-9_9

Type

Journal article

Journal

Exp Suppl

Publication Date

2014

Volume

105

Pages

193 - 210

Keywords

Adenosine Triphosphate, Animals, Calcium, Fluorescent Dyes, Humans, Microscopy, Fluorescence, Molecular Motor Proteins, Molecular Probe Techniques, Movement, Myosins, Optical Imaging, Time Factors