Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The lymphatic endothelial hyaluronan (HA) receptor Lyve-1 is a member of the Link protein superfamily most similar to the leukocyte HA receptor CD44. However, the structure of Lyve-1 and the nature of its interaction with ligand are obscure. Here we present new evidence that Lyve-1 is functionally distinct from CD44. Using truncation mutagenesis we confirm that Lyve-1 in common with CD44 contains an extended HA-binding unit, comprising elements flanking the N and C termini of the consensus lectin-like Link module, bridged by a third conserved disulfide linkage that is critical for HA binding. In addition, we identify six essential residues Tyr-87, Ile-97, Arg-99, Asn-103, Lys-105, and Lys-108 that define a compact HA-binding surface on Lyve-1, encompassing the epitope for an adhesion-blocking monoclonal antibody 3A, in an analogous position to the HA-binding surface in CD44. The overtly electrostatic character of HA binding in Lyve-1 and its sensitivity to ionic strength (IC(50) of 150 mm NaCl) contrast markedly with CD44 (IC(50) > 2 m NaCl) in which HA binding is mediated by hydrogen bonding and hydrophobic interactions. In addition, unlike the extended Link module in CD44, which binds HA efficiently when expressed as a soluble monomer (K(d) = 65.7 mum), that of Lyve-1 requires artificial dimerization, although the full ectodomain is active as a monomer (K(d) = 35.6 mum). Finally, full-length Lyve-1 did not form stable dimers in binding-competent 293T transfectants when assessed using bioluminescent resonance energy transfer. These results reveal that elements additional to the extended Link module are required to stabilize HA binding in Lyve-1 and indicate important structural and functional differences with CD44.

Original publication




Journal article


J Biol Chem

Publication Date





10724 - 10735


Amino Acid Sequence, Endothelium, Lymphatic, Flow Cytometry, Humans, Hyaluronan Receptors, Hyaluronic Acid, Immunoenzyme Techniques, Models, Molecular, Molecular Sequence Data, Mutagenesis, Site-Directed, Mutation, Protein Conformation, Protein Structure, Tertiary, RNA, Messenger, Recombinant Fusion Proteins, Reverse Transcriptase Polymerase Chain Reaction, Sequence Homology, Amino Acid, Surface Plasmon Resonance, Vesicular Transport Proteins