Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Transforming growth factor beta (TGF-beta) is a bifunctional regulator of the growth of myeloid progenitors and is here demonstrated to directly inhibit the growth of primitive erythroid progenitors by 95% to 100% regardless of the cytokines stimulating growth. Autocrine TGF-beta production of primitive hematopoietic progenitors has previously been reported. In the present study, a neutralizing TGF-beta antibody (anti-TGF-beta) added to serum-containing cultures, resulted in a 3-, 4-, and 25-fold increase in burst-forming unit erythroid (BFU-E) colony formation in response to interleukin-4 (IL-4) plus erythropoietin (Epo), SCF plus Epo, and IL-11 plus Epo, respectively. The growth of BFU-E progenitors has been suggested to require a burst-promoting activity in addition to Epo. Accordingly, we observed no BFU-E colony formation in serum-containing cultures in response to Epo alone. In contrast, 50 BFU-E colonies were formed when anti-TGF-beta was included in the culture. In serum-free cultures, Epo also stimulated BFU-E colony formation in the absence of other cytokines, whereas anti-TGF-beta had no effect on the number of colonies formed. Quantitation of TGF-beta 1 in serum by an enzyme-linked immunosorbent assay method showed predominantly the presence of precursor (latent) TGF-beta 1, but also showed active TGF-beta 1 at a concentration sufficient to potently inhibit erythroid colony formation. Thus, neutralization of active TGF-beta 1 in serum shows that Epo alone is sufficient to stimulate the growth of murine BFU-E progenitors.

Type

Journal article

Journal

Blood

Publication Date

01/08/1995

Volume

86

Pages

949 - 957

Keywords

Animals, Antigen-Antibody Reactions, Bone Marrow Cells, Culture Media, Erythropoiesis, Erythropoietin, Granulocytes, Hematopoiesis, Hematopoietic Cell Growth Factors, Macrophages, Mice, Stem Cell Factor, Transforming Growth Factor beta