Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Echo-planar imaging (EPI) is sensitive to motion despite its rapid data acquisition rate. Compared with traditional imaging techniques, it is more sensitive to motion or flow in the phase-encode direction, which can cause image artifacts such as ghosting, misregistration, and loss of spatial resolution. Consequently, EPI of dynamic structures (eg, the cardiovascular system) could benefit from methods that eliminate these artifacts. In this paper, two methods of artifact reduction for motion in the phase-encode direction are evaluated. First, the k-space trajectory is evaluated by comparing centric with top-down ordered sequences. Next, velocity gradient moment nulling (GMN) of the phase-encode direction is evaluated for each trajectory. Computer simulations and experiments in flow phantoms and rabbits in vivo show that uncompensated centric ordering produces the highest image quality. This is probably due to a shorter readout duration, which reduces T2* relaxation losses and off-resonance effects, and to the linear geometry of phantoms and vessels, which can obscure centric blurring artifacts.


Journal article


J Magn Reson Imaging

Publication Date





1122 - 1131


Animals, Artifacts, Computer Simulation, Echo-Planar Imaging, Models, Theoretical, Motion, Phantoms, Imaging, Rabbits