Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The growing availability of high-quality genomic annotation has increased the potential for mechanistic insights when the specific variants driving common genome-wide association signals are accurately localized. A range of fine-mapping strategies have been advocated, and specific successes reported, but the overall performance of such approaches, in the face of the extensive linkage disequilibrium that characterizes the human genome, is not well understood. Using simulations based on sequence data from the 1000 Genomes Project, we quantify the extent to which fine-mapping, here conducted using an approximate Bayesian approach, can be expected to lead to useful improvements in causal variant localization. We show that resolution is highly variable between loci, and that performance is severely degraded as the statistical power to detect association is reduced. We confirm that, where causal variants are shared between ancestry groups, further improvements in performance can be obtained in a trans-ethnic fine-mapping design. Finally, using empirical data from a recently published genome-wide association study for ankylosing spondylitis, we provide empirical confirmation of the behaviour of the approximate Bayesian approach and demonstrate that seven of twenty-six loci can be fine-mapped to fewer than ten variants.

Original publication

DOI

10.1371/journal.pgen.1005535

Type

Journal article

Journal

PLoS Genet

Publication Date

2015

Volume

11

Keywords

Bayes Theorem, Chromosome Mapping, Computer Simulation, Genome, Human, Genome-Wide Association Study, Human Genome Project, Humans, Linkage Disequilibrium, Polymorphism, Single Nucleotide