Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The creation of a comprehensive genetic map in human has been limited by the lack of highly polymorphic markers spaced evenly throughout the human genome. We have utilized yeast artificial chromosomes (YAC) containing large human DNA inserts to help identify highly polymorphic (CA)n repeats at a chosen locus. The DNA of a YAC containing the locus was subcloned in M13 vectors, and the recombinants were screened at high stringency to detect preferentially long (CA)n repeats (n greater than 20). These repeats, which are the most likely to be highly polymorphic, were then studied to confirm both the level of polymorphism and their precise genetic location. This strategy has permitted the identification of a new, highly polymorphic CA repeat (77% heterozygosity) at the T cell receptor alpha chain (TCRA) locus on chromosome 14q. It provides a powerful marker for assessing the role of this locus in the susceptibility to autoimmune and infectious diseases. This approach should permit the development of highly polymorphic markers at any targeted locus and rapidly improve the current human genetic map.


Journal article



Publication Date





820 - 825


Base Sequence, Chromosomes, Fungal, DNA, DNA Probes, DNA, Satellite, Gene Library, Genetic Markers, Genome, Human, Humans, Molecular Sequence Data, Polymorphism, Genetic, Receptors, Antigen, T-Cell, alpha-beta, Repetitive Sequences, Nucleic Acid