Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Exocytosis of secretory vesicles results in the release of insulin from pancreatic beta-cells, although little is known about this process in humans. We examined the exocytosis of single secretory vesicles and their associated fusion pores in human beta-cells by cell-attached capacitance and conductance measurement. Unitary capacitance steps were observed, consistent with the exocytosis of single secretory vesicles. These were often coincident with increases in patch conductance representing the presence of a stable fusion pore. In some events, the fusion pore closed, mediating kiss-and-run, which contributed 20% of the exocytotic events. The cAMP-raising agent forskolin (5 microM) doubled the relative contribution of kiss-and-run. This effect was confirmed visually in MIN6 cells expressing a fluorescent granule probe. Thus, we demonstrate the unitary capacitance steps and fusion pores during single vesicle exocytosis in human beta-cells. Furthermore, these secretory vesicles can undergo rapid recycling by kiss-and-run, and this process is up-regulated by cAMP.

Original publication




Journal article


Pflugers Arch

Publication Date





1343 - 1350


Adult, Animals, Colforsin, Electric Capacitance, Exocytosis, Humans, Insulin, Insulin Secretion, Insulin-Secreting Cells, Male, Middle Aged, Secretory Vesicles