Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

PURPOSE OF REVIEW: The current review aims to provide an update on the recent biomedical interest in oncogenic branched-chain amino acid (BCAA) metabolism, and discusses the advantages of using BCAAs and expression of BCAA-related enzymes in the treatment and diagnosis of cancers. RECENT FINDINGS: An accumulating body of evidence demonstrates that BCAAs are essential nutrients for cancer growth and are used by tumors in various biosynthetic pathways and as a source of energy. In addition, BCAA metabolic enzymes, such as the cytosolic branched-chain aminotransferase 1 (BCAT1) and mitochondrial branched-chain aminotransferase 2, have emerged as useful prognostic cancer markers. BCAT1 expression commonly correlates with more aggressive cancer growth and progression, and has attracted substantial scientific attention in the past few years. These studies have found the consequences of BCAT1 disruption to be heterogeneous; not all cancers share the same requirements for BCAA metabolites and the function of BCAT1 appears to vary between cancer types. SUMMARY: Both oncogenic mutations and cancer tissue-of-origin influence BCAA metabolism and expression of BCAA-associated metabolic enzymes. These new discoveries need to be taken into consideration during the development of new cancer therapies that target BCAA metabolism.

Original publication




Journal article


Curr Opin Clin Nutr Metab Care

Publication Date





64 - 70


Amino Acids, Branched-Chain, Animals, Biomarkers, Tumor, Cytosol, Energy Metabolism, Gene Expression Regulation, Neoplastic, Humans, Isoenzymes, Mitochondria, Models, Biological, Neoplasm Invasiveness, Neoplasm Proteins, Neoplasms, Prognosis, Transaminases