Splenic T1-mapping: a novel quantitative method for assessing adenosine stress adequacy for cardiovascular magnetic resonance.
Liu A., Wijesurendra RS., Ariga R., Mahmod M., Levelt E., Greiser A., Petrou M., Krasopoulos G., Forfar JC., Kharbanda RK., Channon KM., Neubauer S., Piechnik SK., Ferreira VM.
BACKGROUND: Perfusion cardiovascular magnetic resonance (CMR) performed with inadequate adenosine stress leads to false-negative results and suboptimal clinical management. The recently proposed marker of adequate stress, the "splenic switch-off" sign, detects splenic blood flow attenuation during stress perfusion (spleen appears dark), but can only be assessed after gadolinium first-pass, when it is too late to optimize the stress response. Reduction in splenic blood volume during adenosine stress is expected to shorten native splenic T1, which may predict splenic switch-off without the need for gadolinium. METHODS: Two-hundred and twelve subjects underwent adenosine stress CMR: 1.5 T (n = 104; 75 patients, 29 healthy controls); 3 T (n = 108; 86 patients, 22 healthy controls). Native T1spleen was assessed using heart-rate-independent ShMOLLI prototype sequence at rest and during adenosine stress (140 μg/kg/min, 4 min, IV) in 3 short-axis slices (basal, mid-ventricular, apical). This was compared with changes in peak splenic perfusion signal intensity (ΔSIspleen) and the "splenic switch-off" sign on conventional stress/rest gadolinium perfusion imaging. T1spleen values were obtained blinded to perfusion ΔSIspleen, both were derived using regions of interest carefully placed to avoid artefacts and partial-volume effects. RESULTS: Normal resting splenic T1 values were 1102 ± 66 ms (1.5 T) and 1352 ± 114 ms (3 T), slightly higher than in patients (1083 ± 59 ms, p = 0.04; 1295 ± 105 ms, p = 0.01, respectively). T1spleen decreased significantly during adenosine stress (mean ΔT1spleen ~ -40 ms), independent of field strength, age, gender, and cardiovascular diseases. While ΔT1spleen correlated strongly with ΔSIspleen (rho = 0.70, p