Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Members of the carotenoid cleavage dioxygenase family catalyze the oxidative cleavage of carotenoids at various chain positions, leading to the formation of a wide range of apocarotenoid signaling molecules. To explore the functions of this diverse enzyme family, we have used a chemical genetic approach to design selective inhibitors for different classes of carotenoid cleavage dioxygenase. A set of 18 arylalkyl-hydroxamic acids was synthesized in which the distance between an iron-chelating hydroxamic acid and an aromatic ring was varied; these compounds were screened as inhibitors of four different enzyme classes, either in vitro or in vivo. Potent inhibitors were found that selectively inhibited enzymes that cleave carotenoids at the 9,10 position; 50% inhibition was achieved at submicromolar concentrations. Application of certain inhibitors at 100 microm to Arabidopsis node explants or whole plants led to increased shoot branching, consistent with inhibition of 9,10-cleavage.

Original publication

DOI

10.1074/jbc.M805453200

Type

Journal article

Journal

J Biol Chem

Publication Date

20/02/2009

Volume

284

Pages

5257 - 5264

Keywords

Arabidopsis, Arabidopsis Proteins, Carotenoids, Dioxygenases, Enzyme Inhibitors, Hydroxamic Acids, Plant Shoots