Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Glycoprotein VI (GPVI) is a physiologic receptor for collagen expressed at the surface of platelets and megakaryocytes. Constitutive dimerization of GPVI has been proposed as being necessary for the interaction with collagen, although direct evidence of dimerization has not been reported in cell lines or platelets. OBJECTIVES: To investigate oligomerization of GPVI in transfected cell lines and in platelets under non-stimulated conditions. METHODS AND RESULTS: By using a combination of molecular and biochemical techniques, we demonstrate that GPVI association occurs at the surface of transfected 293T cells under basal conditions, through an interaction at the extracellular domain of the receptor. Bioluminescence resonance energy transfer was used to confirm oligomerization of GPVI under these conditions. A chemical crosslinker was used to detect constitutive oligomeric forms of GPVI at the surface of platelets, which contain the Fc receptor (FcR) gamma-chain. CONCLUSIONS: The present results directly demonstrate GPVI-FcR gamma-chain oligomerization at the surface of the platelet, and thereby add to the growing evidence that oligomerization of GPVI may be a prerequisite for binding of the receptor to collagen, and therefore for proper functioning of platelets upon vascular damage.

Original publication

DOI

10.1111/j.1538-7836.2007.02449.x

Type

Journal article

Journal

J Thromb Haemost

Publication Date

05/2007

Volume

5

Pages

1026 - 1033

Keywords

Base Sequence, Biopolymers, Blood Platelets, Cell Line, DNA Primers, Electrophoresis, Polyacrylamide Gel, Humans, Platelet Membrane Glycoproteins