Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: Transductional targeting of adenovirus following systemic or regional delivery remains one of the most difficult challenges for cancer gene medicine. The numerical excess and anatomical advantage of normal (non-cancer) cells in vivo demand far greater detargeting than is necessary for studies using single cell populations in vitro, and this must be coupled with efficient retargeting to cancer cells. METHODS: Adenovirus (Ad5) particles were coated with reactive poly[N-(2-hydroxypropyl)methacrylamide] copolymers, to achieve detargeting, and retargeting ligands were attached to the coating. Receptor-mediated infection was characterised in vitro and anticancer efficacy was studied in vivo. RESULTS: Polymer coating prevented the virus binding any cellular receptors and mediated complete detargeting in vitro and in vivo. These fully detargeted vectors were efficiently retargeted with the model ligand FGF2 to infect FGFR-positive cells. Specific transduction activity was the same as parental virus, and intracellular routing appeared unaffected. Levels of transduction were up to 100-fold greater than parental virus on CAR negative cells. This level of specificity permitted good efficacy in intraperitoneal cancer virotherapy, simultaneously decreasing peritoneal adhesions seen with parental virus. Following intravenous delivery FGF2 mediated unexpected binding to erythrocytes, improving circulation kinetics, but preventing the targeted virus from leaving the blood stream. CONCLUSIONS: Polymer cloaking enables complete adenovirus detargeting, providing a versatile platform for receptor-specific retargeting. This approach can efficiently retarget cancer virotherapy in vivo. Ligands should be selected carefully, as non-specific interactions with non-target cells (e.g. blood cells) can deplete the pool of therapeutic virus available for targeting disseminated disease.

Original publication

DOI

10.1002/jgm.1121

Type

Journal article

Journal

J Gene Med

Publication Date

03/2008

Volume

10

Pages

280 - 289

Keywords

Acrylamides, Adenoviridae, Animals, Antibodies, Monoclonal, Female, Genetic Therapy, Genetic Vectors, Humans, Mice, Ovarian Neoplasms, Peritoneal Neoplasms, Polymers, Receptors, Fibroblast Growth Factor, Transduction, Genetic, Transgenes, Tumor Cells, Cultured