Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Triglycerides in the beta-cell may be important for stimulus-secretion coupling, through provision of a lipid-derived signal, and for pathogenetic events in NIDDM, where lipids may adversely affect beta-cell function. In adipose tissues, hormone-sensitive lipase (HSL) is rate-limiting in triglyceride hydrolysis. Here, we investigated whether this enzyme is also expressed and active in beta-cells. Northern blot analysis and reverse transcription-polymerase chain reaction demonstrated that HSL is expressed in rat islets and in the clonal beta-cell lines INS-1, RINm5F, and HIT-T15. Western blot analysis identified HSL in mouse and rat islets and the clonal beta-cells. In mouse and rat, immunocytochemistry showed a predominant occurrence of HSL in beta-cells, with a presumed cytoplasmic localization. Lipase activity in homogenates of the rodent islets and clonal beta-cells constituted 2.1 +/- 0.6% of that in adipocytes; this activity was immunoinhibited by use of antibodies to HSL. The established HSL expression and activity in beta-cells offer a mechanism whereby lipids are mobilized from intracellular stores. Because HSL in adipocytes is activated by cAMP-dependent protein kinase (PKA), PKA-regulated triglyceride hydrolysis in beta-cells may participate in the regulation of insulin secretion, possibly by providing a lipid-derived signal, e.g., long-chain acyl-CoA and diacylglycerol.

Original publication

DOI

10.2337/diabetes.48.1.228

Type

Journal article

Journal

Diabetes

Publication Date

01/1999

Volume

48

Pages

228 - 232

Keywords

Adipocytes, Animals, Blotting, Northern, Clone Cells, Enzyme Activation, Fluorescent Antibody Technique, Hydrolysis, Islets of Langerhans, Mice, Mice, Inbred Strains, Rats, Rats, Sprague-Dawley, Reverse Transcriptase Polymerase Chain Reaction, Sterol Esterase, Triglycerides