Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although conventional anticancer drugs exhibit excellent efficacy, serious adverse effects and/or even toxicity have occurred due to their nonselectivity. Moreover, active targeting approaches have not consistently led to successful outcomes. Ligands that simultaneously possess targeting capability and exert a strong influence on intracellular signaling cascades may be expected to improve the therapeutic efficacy of active targeting nanoparticulate carriers. In this study, we screened a targeting peptide, LPLTPLP, which specifically bound to non-small cell lung cancer (NSCLC) specimens in vitro. Surprisingly, this peptide inhibited the expression of Hsp90 and induced apoptosis by preventing autophagy in A549 cells treated with docetaxel. The results suggested that this peptide might be used as a promising dual-functional ligand for cancer treatment. Based on these findings, we designed and developed a novel active targeting delivery system by modifying docetaxel nanoparticles (DNP) with the dual-functional ligand LPLTPLP. We consistently demonstrated that the cellular uptake of nanoparticles (NPs) was significantly enhanced in vitro. Furthermore, the targeting NPs exhibited significantly improved antitumor efficacy and biodistribution compared with nontargeting nanodrug and free docetaxel. These findings demonstrate the feasibility of dual-functional NPs for efficient anticancer therapy.

Original publication

DOI

10.1016/j.jconrel.2015.11.029

Type

Journal article

Journal

Journal of controlled release : official journal of the Controlled Release Society

Publication Date

01/2016

Volume

221

Pages

26 - 36

Addresses

Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China.

Keywords

Lung, Cell Line, Tumor, BALB 3T3 Cells, Animals, Mice, Carcinoma, Non-Small-Cell Lung, Lung Neoplasms, Taxoids, Peptides, Antineoplastic Agents, Drug Carriers, Drug Delivery Systems, Tissue Distribution, Female, Male, HSP90 Heat-Shock Proteins, Nanoparticles, Molecular Targeted Therapy, Docetaxel